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1 Introduction

This short note gives a derivation of a set of numbers similar to the Fibonacci numbers. There
numbers will be called the Bob numbers or the Bob integers.2 These numbers are defined more
carefully below. The technique of matrix analysis using matrix diagonalization is used to find a
closed form expression for these numbers.

The author has previously written two papers3 around the time frame of 1990 which contain in
essence the derivations given here.

It is also shown that powers of the so-called golden ratio ψ = 1+
√

5

2

1George Schils is no longer at FEREGO. Contact him via the web or email.
2These are named after Robert Bastaz whom performed some derivations of this result. This derivation is not

presented here however.
3These papers were written by the author, and are lost and missing.
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ψn =

(

1 +
√

5

2

)n

approach an exact integer as n gets large.

2 Definition of Bob numbers

The so-called Bob integers are defined as the sequence of numbers 1, 3, 4, 7, 11, and so on. The
next number is obtained as the sum of the previous two numbers. If the nth number is defined as
x(n) then this relation is described by

x(n+ 2) = x(n+ 1) + x(n) , (1)

with
x(0) = 1, x(1) = 3 . (2)

This equation is solved in closed form in the next section.

3 Derivation of n
th sequence term

Equation 1 is a difference equation. Such equations are well studied in mathematics and many well
known solution techniques exist. Here we will use the technique of matrices to express and then
solve the system equation given by Eq. 1.

To cast Eq. 1 into the form of a matrix system, first define the vector v(n) as

v(n) =

[

x(n+ 1)
x(n)

]

. (3)

Then Eq. 1 can be expressed matrix form as

v(n+ 1) =

[

1 1
1 0

]

v(n) , (4)

as can be seen using the rules of matrix multiplication.

Defining the system matrix A for this problem as

A =

[

1 1
1 0

]

(5)

then Eq. 4 assumes the simpler form
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v(n+ 1) = A v(n) , (6)

where multiplication means matrix multiplication.

This equation is to be solved subject to the initial condition

v(0) =

[

3
1

]

. (7)

It is easy to verify by induction that the solution to Eq. 6 for any A is given by

v(n) = Anv(0) , (8)

where An denotes the matrix A raised to the nth power.

If the matrix A is diagonizable via the similarity transform S matrix, then A can be expressed as

A = S

[

λ1 0
0 λ2

]

S−1 . (9)

Not every matrix A is expressible as given above, but for this analysis the existence of the repre-
sentation given by Eq. 9 is assumed.

The nth power of such a diagonizable matrix is then easily expressed as

An = S

[

λn
1 0
0 λn

2

]

S−1 , (10)

which is also easily obtained by induction on n.

We have actually solved a general 2 × 2 system, assuming diagonizability. An n × n is solved
similarly.

From Eq. 8 the general solution of the system is

v(n) = S

[

λn
1 0
0 λn

2

]

S−1 v(0) . (11)

This solution is for any A that is diagonizable with arbitrary initial condition vector v(0). It is
noted that Eq. 11 holds for a general n× n system.
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4 Specific Solution

Our interest in this paper is to solve the system equations 6 and 7 for the specific matrix given by
Eq. 5.

We can verify by direct multiplication the relation

1
√

5

[

1 1

−
√

5+1

2

√

5−1

2

] [

1−
√

5

2
0

0 1+
√

5

2

] [ √

5−1

2
−1

√

5+1

2
1

]

=

[

1 1
1 0

]

, (12)

and so comparing to Eq. 9

λ1 =
1 −

√
5

2
(13)

ψ = λ2 =
1 +

√
5

2
(14)

and

S =

[

1 1

−
√

5+1

2

√

5−1

2

]

. (15)

It is clear that λ1λ2 = −1, so the λ’s are negative reciprocals. The number ψ is called the golden

ratio.

Multiplying out Eq. 11, making substitutions from Eqs. 13-15, performing some algebra, and taking
the second element of the vector gives the desired representation for the nth Bob integer

x(n) =

(

1 +
√

5

2

)n+1

+

(

1 −
√

5

2

)n+1

. (16)

This is a remarkable result!

5 Integer properties of λ
n
1

It is clear that x(n) is always an integer for all n. A simple manipulation of Eq. 16 gives

(

1 +
√

5

2

)n

= x(n− 1) −

(

1 −
√

5

2

)n

. (17)
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The second term on the right hand side of this equation becomes exponentially small as n increases,
and the first term on the right hand side is always an integer. Thus the left hand side of Eq. 17
exponentially approaches an exact integer as n increases.

For example, the 149th Bob integer is 22291846172619859445381409012498 and the numerically
calculated value of λ150

1 is

22291846172619859445381409012497.999999999999999999999999999999955140548

6 Generalized Bob Number Representations

A critical assumption in the above analysis and the assumption that results in the x(n) being
integers is the assumption on the initial conditions. In the previous section, the initial condition
values were 1 and 3. In this section, the analysis of the previous section is generalized to the case
where the starting values are any arbitrary integers n1 and n2.

v(0) =

[

n2

n1

]

. (18)

Evaluating Eq. 11 and repeating the above analysis produces the generalized representation

x(n) =

(

1 +
√

5

2

)n [

n1

(

5 −
√

5

10

)

+
n2√

5

]

+

(

1 −
√

5

2

)n [

n1

(

5 +
√

5

10

)

−
n2√

5

]

. (19)

Performing steps similar to those associated with Eq. 17 and noting that x(n) is integer for all n
shows that the quantity

(

1 +
√

5

2

)n [

n1

(

5 −
√

5

10

)

+
n2√

5

]

(20)

exponentially approaches an integer as n gets large. This is true for all integer n1 and n2.

A special case of Eq. 19 is when n1 = 0 and n2 = 1, resulting in the well known Fibonacci sequence
F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . . . Using the notation Fn to denote the nth

Fibonacci number, Eq. 19 becomes

Fn =
1
√

5

[(

1 +
√

5

2

)n

−

(

1 −
√

5

2

)n]

. (21)

This is also an elegant form.

Finally, the Fn symbols can be used to express the generalized x(n) numbers of Eq. 19. First we
note that the numbers begin as x(0) = n1, x(1) = n2, x(2) = n1 + n2, x(3) = n1 + 2n2, x(4) =
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2n1 + 3n2, . . . and it is seen that the coefficients of the n1 and n2 are the Fibonacci numbers Fn

themselves. This relation is stated as

x(n+ 1) = Fn n1 + Fn+1 n2 . (22)

This is easily proved by induction on n using the Fibonacci relation Fn+2 = Fn+1 + Fn as well as
Eq. 1. This result alternatively follows by using Eq. 21 to give the coefficients in Eq. 19.

7 Summary

The technique of matrix analysis has been used to solve for a closed form expression for a set of
numbers related to the Fibonacci numbers. Both the end result as well as the derivation technique
are interesting. A remarkable property regarding golden ratio powers has been proved and an
example has been given. Results were generalized to include all starting seeds for Fibonacci type
sequences, and a more general golden ratio result was shown.


